
TERM REWRITING:

BASIC CONCEPTS, TOOLS, AND APPLICATIONS

SARAH WINKLER

Term rewriting is a simple but powerful model of computation which
has numerous applications in computer science, mathematics, logic, pro-
gramming languages, and biology. This lecture series introduces some
foundational notions of first-order term rewriting: termination, conflu-
ence, completion, and complexity. For each of these properties, basic
techniques to establish them are discussed [1, 4, 3]. The practical rele-
vance of these concepts is illustrated by examples from different fields:

• Termination of a rewrite system means the absence of infinite
rewrite sequences. Interpretations and reduction orders are pre-
sented as termination techniques. Termination of programs or
expression simplification (e.g. in compilers) can be seen as the
respective property of a rewrite system [6], and reduction orders
play a key role in theorem proving [5].

• The derivational complexity of a terminating rewrite system,
i.e., the maximal number of steps to a result, is often relevant
for theoretical considerations; and important to reason about
programs in performance-critical contexts [2]. We discuss ma-
trix interpretations as a method to establish complexity bounds,
and mention bounds imposed by other termination methods.

• Confluence expresses a kind of determinism of the rewriting
process. We discuss critical pairs and orthogonality as conflu-
ence techniques. As applications, we mention determinism of
simple games [8] and expression simplification [7].

• Completion can transform a set of equations into an equivalent
terminating and confluent rewrite system. If time permits, a
simple completion procedure will be presented, which will be
shown to constitute a theorem proving method.

Automatic tools to determine these properties will be demonstrated,
too; also to give an impression of the vast number of available techniques
beyond the scope of this course. Parts of the lecture will be dedicated
to solve exercises (with and without tools) to get hands-on experience.

1



2 SARAH WINKLER

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. 10.1017/CBO9781139172752.

[2] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl: Analyzing Runtime

and Size Complexity of Integer Programs. In ACM Transactions on Programming
Languages and Systems. 38(4): 13:1-13:50 (2016). 10.1145/2866575

[3] D. Hofbauer and C. Lautemann. Termination proofs and the length of

derivations. In Proc. 3rd RTA, vol. 355 of LNCS, pp. 167–177, 1989.
10.1007/3-540-51081-8 107.

[4] G. Moser, A. Schnabl and J. Waldmann. Complexity analysis of term rewriting

based on matrix and context dependent interpretations. In Proc. FSTTCS 2008,
vol. 2 of LIPIcs, pp. 304–315, 2008. 10.4230/LIPIcs.FSTTCS.2008.1762.

[5] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Prov-

ing, In Handbook of Automated Reasoning. North Holland, 2001.
10.1016/B978-044450813-3/50009-6.

[6] N. Nishida and S. Winkler. Loop Detection by Logically Constrained Term
Rewriting, In Proc. 10th VSTTE, vol. 11294 of LNCS, pp. 309–321, 2018.

10.1007/978-3-030-03592-1 18.

[7] S. Winkler and A. Middeldorp. Completion for logically constrained rewrit-
ing. In Proc. 3rd FSCD, vol. 108 of LIPIcs, pp. 30:1–30:18, 2018.

10.4230/LIPIcs.FSCD.2018.30.

[8] S. Winkler and A. Middeldorp. Tools in Term Rewriting for Education. EPTCS,
to appear. Available from http://profs.scienze.univr.it/winkler/papers/

SWAM-ThEdu19.pdf.

Università di Verona, Italy
E-mail address: sarahmaria.winkler@univr.it

http://doi.org/10.1017/CBO9781139172752
http://doi.org/10.1145/2866575
http://doi.org/10.1007/3-540-51081-8_107
http://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://doi.org/10.1016/B978-044450813-3/50009-6
http://doi.org/10.1007/978-3-030-03592-1_18
http://doi.org/10.4230/LIPIcs.FSCD.2018.30
http://profs.scienze.univr.it/winkler/papers/SWAM-ThEdu19.pdf
http://profs.scienze.univr.it/winkler/papers/SWAM-ThEdu19.pdf

	References

