
Ideas of Metagraph-Based Types

Yuriy E. Gapanyuk, Anatoly N. Nardid, and Dmitry A. Zuev

Bauman Moscow State Technical University, Moscow, Russia
gapyu@bmstu.ru, nazgull09@gmail.com, zuynew@yandex.ru

Abstract

The metagraph model is a kind of “complex networks with emergence” model. To
process and transform metagraph data, the metagraph agents are used. The combination
of the metagraph data model and the metagraph agent model makes it possible to represent
various type systems in the form of a metagraph model.

According to the HOTT book [5]: “the basic concept of type theory, that the term a is of
type A, which is written: a : A. This expression is traditionally thought of as akin to: ‘a is an
element of the set A’. However, in homotopy type theory we think of it instead as: ‘a is a point
of the space A’ .”

We propose the basic ideas of an approach in which a is a subgraph in a complex graph A.
According to [1]: “a complex network is a graph (network) with non-trivial topological features
– features that do not occur in simple networks such as lattices or random graphs but often occur
in graphs modeling of real systems.” The terms “complex network” and “complex graph” are
often used synonymously. According to [2]: “the term ‘complex network,’ or simply ‘network,’
often refers to real systems while the term ‘graph’ is generally considered as the mathematical
representation of a network.” In this paper, we also consider these terms synonymous.

One of the essential kinds of such complex network models is “complex networks with
emergence.” The term “emergence” is used in general system theory. The emergent element
means a whole that cannot be separated into its component parts. As far as the authors know,
currently, there are two “complex networks with emergence” models that exist: hypernetworks
and metagraphs.

The hypernetwork model [4] is mature, and it helps to understand many aspects of complex
networks with an emergence. However, from the authors’ point of view, the metagraph model
is more flexible and convenient than a hypernetwork model for use in information systems [3].

According to paper [3], the metagraph approach may be considered as a higher-level struc-
tural framework for the representation of dynamical complex graph structures.

The metagraph is described as follows: MG = 〈V,MV,E〉, where MG – metagraph; V – set
of metagraph vertices; MV – set of metagraph metavertices; E – set of metagraph edges.

Metagraph vertex is described by set of attributes: vi = {atrk}, vi ∈ V , where atrk –
attribute.

Metagraph edge is described by set of attributes, the source and destination vertices (or
metavertices): ei = 〈vS , vE , {atrk}〉, ei ∈ E, where ei – metagraph edge; vS – source vertex
(metavertex) of the edge; vE – destination vertex (metavertex) of the edge; atrk – attribute.

The metagraph fragment is defined as MGi = {evj}, evj ∈ (V ∪ E ∪MV), where MGi –
metagraph fragment; evj – an element that belongs to union of vertices, edges and metavertices.

The metagraph metavertex: mvi = 〈{atrk},MGf 〉,mvi ∈ MV , where mvi – metagraph
metavertex; atrk – attribute, MGf – metagraph fragment.

From the general system theory point of view, metavertex is a particular case of manifes-
tation of emergence principle, which means that metavertex with its private attributes and
connections became whole that cannot be separated into its component parts. The example of
metagraph representation is represented in Fig. 1.

Ideas of Metagraph-Based Types Gapanyuk, Nardid and Zuev

Figure 1: The example of metagraph representation.

The example contains three metavertices: mv1, mv2, and mv3. Metavertex mv1 contains
vertices v1, v2, v3 and connecting them edges e1, e2, e3. Metavertex mv2 contains vertices v4,
v5, and connecting them edge e6. Edges e4, e5 are examples of edges connecting vertices v2–v4
and v3-v5 are contained in different metavertices mv1 and mv2. Edge e7 is an example of the
edge connecting metavertices mv1 and mv2. Edge e8 is an example of the edge connecting
vertex v2 and metavertex mv2. Metavertex mv3 contains metavertex mv2, vertices v2, v3 and
edge e2 from metavertex mv1 and also edges e4, e5, e8 showing emergent nature of metagraph
structure.

Consider the basics of the object-oriented data structures representation using the meta-
graph approach. We review only data structures containing data fields in form name : type :
value where type may be atomic type, complex type or list (collection) type.

The data structure formally may be defined as follows: DS = 〈dsT , DSF 〉 , dsT ∈
TP,DSF =

{
fldi

}
, where DS – data structure; dsT – data structure type belongs set of

types TP ; DSF – set of data structure fields fldi.

The field is defined as follows: fldi = 〈fldN , f ldT , f ldV 〉 , f ldT ∈ TP, where fldN – field
name; fldT – field type belongs set of types TP , fldV – field value of type fldT .

Every type tp belonging to set of types TP must be either atomic type TPA or complex
type TPC or list (collection) type TPL. The atomic type TPA corresponds to the only value.
The complex type TPC contains a set of corresponding field types fldT . The list type TPL is
a collection of elements of any type: (∀tp ∈ TP)tp = TPA|TPC = {fldT } |TPL = [TP].

The example showing one of the possible cases of metagraph representation of object–
oriented data structure is represented in Fig. 2.

Data structure DS and its corresponding type are represented as a metavertices bound with
edge dsT . The set of data structure fields DSF (also represented as a metavertex) consists of
three fields fld1, fld2 and fld3.

Field fld1 with the name “field1” corresponds to the atomic type “int” with value “1”.
Field fld1 is represented as a metavertex, field name fld1N , and value fld1V are represented as
inner vertices. The field type is represented as edge fld1T bound field metavertex with atomic
type TPA vertex.

Field fld2 with the name “field2” corresponds to the complex type consists of fields “field2 1”
of type “int” with value “2” and “field2 2” of type “string” with value “string2”. Field fld2

is represented as a metavertex, field name fld2N is represented as inner vertex, and value fld2V
is represented as inner metavertex containing metavertices fld2 1 and fld2 2 correspondings
to subfields “field2 1” and “field2 2” with their values. Field fld2 type is represented as edge
fld2T bound field metavertex with complex type TPC metavertex. The TPC metavertex contains

2

Ideas of Metagraph-Based Types Gapanyuk, Nardid and Zuev

Figure 2: The metagraph representation of object-oriented data structure.

inner vertices corresponding to subfields fld2 1 and fld2 2 types. The edges fld2 1
T and fld2 2

T

bound subfields fld2 1 and fld2 2 metavertices with corresponding subtypes vertices.

Field fld3 with the name “field3” corresponds to the list (collection) type “list of int” with
value “1, 2, 3”. Field fld3 is represented as a metavertex, field name fld3N is represented as inner
vertex and value fld3V is represented as inner metavertex corresponding to the list containing
vertices corresponding to the list items. The field type is represented as edge fld3T bound field
metavertex with list (collection) type TPL metavertex. The TPL metavertex contains inner
vertex corresponds to the list item type. List items bound with list item type with fld3 item

T

edge (shown only for list item “3” in order not to clutter the figure).

The example shows that the object–oriented data structure may be represented using the
metagraph approach without losing detailed information. In conclusion, we note other features
of the metagraph model related to the description of types:

• Types are considered as fragments of a complex graph, in which not only the values of
the vertices are important, but also the relationships between them. This makes the
metagraph model related to the ontological knowledge model.

• To process and transform metagraph data, the metagraph agents are used. The metagraph
agent may be represented as a set of metagraph fragments. The distinguishing feature of

3

Ideas of Metagraph-Based Types Gapanyuk, Nardid and Zuev

the metagraph agent is its homoiconicity, which means that it can be data structure for
itself.

• The combination of the metagraph data model and the metagraph agent model makes
it possible to represent various type systems in the form of a metagraph model. In this
case, the relationships between the elements of the model are represented explicitly.

References

[1] Manoj B.S., Abhishek Chakraborty, and Rahul Singh. Complex Networks: A Networking and Signal
Processing Perspective. Prentice Hall, 2018.

[2] Victor Chapela, Regino Criado, Santiago Moral, and Miguel Romance. Intentional Risk Manage-
ment through Complex Networks Analysis. SpringerBriefs in Optimization. Springer International
Publishing, first edition, 2015.

[3] Valeriy M. Chernenkiy, Yuriy E. Gapanyuk, Anatoly N. Nardid, Anton V. Gushcha, and Yuriy S.
Fedorenko. The hybrid multidimensional-ontological data model based on metagraph approach. In
Alexander K. Petrenko and Andrei Voronkov, editors, Perspectives of System Informatics, volume
10742 of LNCS, pages 72–87, Cham, 2018. Springer International Publishing.

[4] Jeffrey Johnson. Hypernetworks in the Science of Complex Systems. Series on Complexity Science.
Imperial College Press, 2013.

[5] The Univalent Foundatiosn Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. http://homotopytypetheory.org/book/, 2013.

4

http://homotopytypetheory.org/book/

