On multilattice counterparts of MNT4, S4, and S5

Oleg Grigoriev*, Yaroslav Petrukhin*

*Lomonosov Moscow State University, Moscow, Russia *Lodz University, Lodz, Poland grig@philos.msu.ru, yaroslav.petrukhin@mail.ru

Abstract

In this report, we are going to introduce three recently developed modal multilattice logics based on **MNT4**, **S4**, and **S5** in the form of cut-free sequent and hypersequent calculi as well as in the form of algebraic semantics.

Multilattice logic $\mathbf{ML_n}$ was designed by Shramko [9] in order to generalize frameworks of Arieli and Avron's bilattice logic [1], Shramko and Wansing's trilattice logic [10], and Zaitsev's tetralattice logic [11]. Modal multilattice logic $\mathbf{MML_n}$ was developed by Kamide and Shramko [7]. They expected that this logic will be a multilattice version of **S4**. However, as argued in [5, 4], it is not really the case. **S4** proves the interdefinability of necessity and possibility modal operators, while, as follows from the embedding theorem of **S4** into $\mathbf{MML_n}$ [7], the latter logic does not have the interdefinability axioms. Moreover, the algebraic structure suggested by Kamide and Shramko is too weak to be an adequaete semantics for $\mathbf{MML_n}$ (see [5] for the details). The closure and interior operators introduced by Kamide and Shramko are rather multilattice versions of Tarski's operators (which are suitable for $\mathbf{MNT4}$), than Kuratowski ones (which are needed for **S4**). It has motivated us to present a genuine multilattice version of **S4** based on Kuratowski's closure and interior operators (we call this logic $\mathbf{MML_n^MNT4}$).

multilattice version of MNT4 based on Tarski's operator (we call this logic MML_n^{MNT4}). Moreover, we consider one more logic: MML_n^{S5} which is a multilattice version of S5. Its algebraic semantics is based on Halmos closure and interior operators. What is important in the case of S5 (since we a interested not only in algebraic, but proof-theoretical aspects of multilattice logics), S5 has an impressive amount of various proof systems. In particular, it has at least eight various cut-free hypersequent calculi (see [6] for the latest one and [2] for a survey of the others). This feature of S5 makes it a good candidate for the development on its base of non-standard modal logics (for example, multilattice modal logics).

Let us introduce the notion of multilattice.

Definition 1. [7, p. 319, Definitions 2.1 and 2.2] A multilattice is a structure $\mathcal{M}_n = \langle S, \leq_1, \ldots, \leq_n \rangle$, where $n > 1, S \neq \emptyset, \leq_1, \ldots, \leq_n$ are partial orders such that $\langle S, \leq_1 \rangle, \ldots, \langle S, \leq_n \rangle$ are lattices with the corresponding pairs of meet and join operators $\langle \cap_1, \cup_1 \rangle, \ldots, \langle O_n, \cup_n \rangle$ as well as the corresponding *j*-inversion operators $-1, \ldots, -n$ which satisfy the following conditions, for each $j, k \leq n, j \neq k$, and $a, b \in S$:

 $a \leqslant_j b$ implies $-jb \leqslant_j -ja$; $a \leqslant_k b$ implies $-ja \leqslant_k -jb$; -j-ja = a.

Definition 2 (Ultralogical multilattice). [7, p. 319, Definitions 2.3 and 2.4] A pair $\langle \mathcal{M}_n, \mathcal{U}_n \rangle$ is called an *ultralogical multilattice* iff $\mathcal{M}_n = \langle S, \leq_1, \ldots, \leq_n \rangle$ is a multilattice and $\mathcal{U}_n \subsetneq S$ satisfies the following conditions, for each $j, k \leq n, j \neq k$, and $a, b \in S$:

- $a \cap_j b \in \mathcal{U}_n$ iff $a \in \mathcal{U}_n$ and $b \in \mathcal{U}_n$ (\mathcal{U}_n is a multifilter on \mathcal{M}_n);
- $a \cup_j b \in \mathcal{U}_n$ iff $a \in \mathcal{U}_n$ or $b \in \mathcal{U}_n$ (\mathcal{U}_n is a prime multifilter on \mathcal{M}_n);
- $a \in \mathcal{U}_n$ iff $-j k a \notin \mathcal{U}_n$ (\mathcal{U}_n is an ultramultifilter on \mathcal{M}_n).

On multilattice counterparts of MNT4, S4, and S5

The formulas of $\mathbf{ML}_{\mathbf{n}}$ are built from the set $\mathcal{P} = \{p_n \mid n \in \mathbb{N}\}$ of propositional variables, negations \neg_1, \ldots, \neg_n , conjunctions \land_1, \ldots, \land_n , and disjunctions \lor_1, \ldots, \lor_n . A valuation v is defined as a mapping from \mathcal{P} to S. It is extended into complex formulas as follows: $v(\neg_j \phi) =$ $-_j v(\phi), v(\phi \land_j \psi) = v(\phi) \cap_j v(\psi)$, and $v(\phi \lor_j \psi) = v(\phi) \cup_j v(\psi)$. The entailment relation is defined as follows:

 $\Gamma \models_{\mathbf{ML}_n} \Delta$ iff for each De Morgan ultralogical multilattice $\langle \mathcal{M}_n, \mathcal{U}_n \rangle$ and each valuation v, it holds that if $v(\gamma) \in \mathcal{U}_n$ (for each $\gamma \in \Gamma$), then $v(\delta) \in \mathcal{U}_n$ (for some $\delta \in \Delta$).

In the next definition we adopt the notions of Tarski, Kuratowski, and Halmos closure and interior operators for the multilattice case (we follow Cattaneo and Ciucci [3]).

Definition 3. We say that a multilattice $\mathcal{M}_n = \langle S, \leq_1, \ldots, \leq_n \rangle$ have *Tarski* operators iff for each $j \leq n$ the unary operators of *interior* I_j and *closure* C_j can be defined on S and satisfy the subsequent conditions $(a, b, c \in S, 1 := c \cup_j \neg_j \neg_k c, 0 := c \cap_j \neg_j \neg_k c, k \neq j)$:

$I_j(a) \leqslant_j a;$	$C_j(a) \cup_j C_j(b) \leqslant_j C_j(a \cup_j b);$	$k I_j(a) = I_j(k a);$
$I_j(a) = I_j I_j(a);$	$I_j(1) = 1;$	$k C_j(a) = C_j(k a);$
$I_j(a \cap_j b) \leqslant_j I_j(a) \cap_j I_j(b);$	$C_j(0) = 0;$	$I_j(a) =jk C_j(jk a)$
$a \leqslant_j C_j(a);$	$j I_j(a) = C_j(j a);$	$C_j(a) =jk I_j(jk a)$
$C_j(a) = C_j C_j(a);$	$j C_j(a) = I_j(j a);$	

Tarski operators are said to be *Kuratowski* ones iff the subsequent conditions are fulfilled: $I_j(a \cap_j b) = I_j(a) \cap_j I_j(b)$ and $C_j(a) \cup_j C_j(b) = C_j(a \cup_j b)$. Kuratowski operators are said to be *Halmos* ones iff the subsequent conditions are fulfilled: $I_j(-_jI_j(a)) = -_jI_j(a)$ and $C_j(-_jC_j(a)) = -_jC_j(a)$.

The formulas of modal multilattice logics are built not only from propositional connectives, but necessity operators \Box_1, \ldots, \Box_n and possibility operators $\diamondsuit_1, \ldots, \diamondsuit_n$. The entailment relation in modal multilattice logics is understood in the following way:

 $\Gamma \models \Delta$ in $\mathbf{MML}_n^{\mathbf{MNT4}}$ (resp., $\mathbf{MML}_n^{\mathbf{S4}}$, $\mathbf{MML}_n^{\mathbf{S5}}$) iff for each ultralogical multilattice $\langle \mathcal{M}_n, \mathcal{U}_n \rangle$ with Tarski (resp., Kuratowski, Halmos) operators and each valuation v, it holds that if it holds that if $v(\gamma) \in \mathcal{U}_n$ (for each $\gamma \in \Gamma$), then $v(\delta) \in \mathcal{U}_n$ (for some $\delta \in \Delta$).

Let us introduce a sequent calculus for the logic $\mathbf{MML_n^{MNT4}}$. By a sequent we understood a pair written as $\Gamma \Rightarrow \Delta$, where Γ, Δ are finite sets of formulas. In what follows, the letter π denotes a set which is either empty or consists of exactly one formula from the list $\Box_j \psi, \neg_j \Diamond_j \psi, \neg_k \Box_j \psi$, where $k \neq j$; the letter δ denotes a set which is either empty or consists of exactly one formula from the list $\Diamond_j \psi, \neg_j \Box_j \psi$, where $k \neq j$. The axioms are as follows:

(A)
$$\phi \Rightarrow \phi$$
 (A_¬) $\neg_j \phi \Rightarrow \neg_j \phi$

The structural rules are cut (which is admissible) and weakening. The non-negated logical rules are as follows:

$$(\wedge_{j} \Rightarrow) \frac{\phi, \psi, \Gamma \Rightarrow \Delta}{\phi \wedge_{j} \psi, \Gamma \Rightarrow \Delta} \qquad (\Rightarrow \wedge_{j}) \frac{\Gamma \Rightarrow \Delta, \phi \quad \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \phi \wedge_{j} \psi} (\vee_{j} \Rightarrow) \frac{\phi, \Gamma \Rightarrow \Delta}{\phi \vee_{j} \psi, \Gamma \Rightarrow \Delta} \qquad (\Rightarrow \vee_{j}) \frac{\Gamma \Rightarrow \Delta, \phi, \psi}{\Gamma \Rightarrow \Delta, \phi \vee_{j} \psi}$$

On multilattice counterparts of MNT4, S4, and S5

The *jj*-negated logical rules are as follows:

$$\begin{array}{l} (\neg_{j}\wedge_{j}\Rightarrow) \ \frac{\neg_{j}\phi,\Gamma\Rightarrow\Delta}{\neg_{j}(\phi\wedge_{j}\psi),\Gamma\Rightarrow\Delta} & (\Rightarrow\neg_{j}\wedge_{j}) \ \frac{\Gamma\Rightarrow\Delta,\neg_{j}\phi,\neg_{j}\psi}{\Gamma\Rightarrow\Delta,\neg_{j}(\phi\wedge_{j}\psi)} \\ (\neg_{j}\vee_{j}\Rightarrow) \ \frac{\neg_{j}\phi,\neg_{j}\psi,\Gamma\Rightarrow\Delta}{\neg_{j}(\phi\vee_{j}\psi),\Gamma\Rightarrow\Delta} & (\Rightarrow\gamma_{j}\vee_{j}) \ \frac{\Gamma\Rightarrow\Delta,\gamma_{j}\phi}{\Gamma\Rightarrow\Delta,\neg_{j}(\phi\vee_{j}\psi)} \\ (\neg_{j}\neg_{j}\Rightarrow) \ \frac{\phi,\Gamma\Rightarrow\Delta}{\neg_{j}\gamma_{j}\phi,\Gamma\Rightarrow\Delta} & (\Rightarrow\gamma_{j}\neg_{j}) \ \frac{\Gamma\Rightarrow\Delta,\phi}{\Gamma\Rightarrow\Delta,\gamma_{j}\gamma_{j}\phi} \end{array}$$

The kj-negated logical rules as follows:

$$\begin{array}{l} (\neg_{k}\wedge_{j}\Rightarrow) \ \frac{\neg_{k}\phi, \neg_{k}\psi, \Gamma\Rightarrow\Delta}{\neg_{k}(\phi\wedge_{j}\psi), \Gamma\Rightarrow\Delta} & (\Rightarrow\gamma_{k}\wedge_{j}) \ \frac{\Gamma\Rightarrow\Delta, \neg_{k}\phi \quad \Gamma\Rightarrow\Delta, \neg_{k}\psi}{\Gamma\Rightarrow\Delta, \neg_{k}(\phi\wedge_{j}\psi)} \\ (\neg_{k}\vee_{j}\Rightarrow) \ \frac{\gamma_{k}\phi, \Gamma\Rightarrow\Delta}{\neg_{k}(\phi\vee_{j}\psi), \Gamma\Rightarrow\Delta} & (\Rightarrow\gamma_{k}\vee_{j}) \ \frac{\Gamma\Rightarrow\Delta, \gamma_{k}\phi, \gamma_{k}\psi}{\Gamma\Rightarrow\Delta, \gamma_{k}(\phi\vee_{j}\psi)} \\ (\gamma_{k}\gamma_{j}\Rightarrow) \ \frac{\Gamma\Rightarrow\Delta, \phi}{\gamma_{k}\gamma_{j}\phi, \Gamma\Rightarrow\Delta} & (\Rightarrow\gamma_{k}\gamma_{j}) \ \frac{\phi, \Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta, \gamma_{k}(\phi\vee_{j}\psi)} \end{array}$$

The non-negated modal rules are as follows:

$$(\Box_{j} \Rightarrow) \ \frac{\phi, \Gamma \Rightarrow \Delta}{\Box_{j} \phi, \Gamma \Rightarrow \Delta} \quad (\Rightarrow \Diamond_{j}) \ \frac{\Gamma \Rightarrow \Delta, \phi}{\Gamma \Rightarrow \Delta, \Diamond_{j} \phi} \quad (\Rightarrow \Box_{j}) \ \frac{\pi \Rightarrow \Diamond_{j} \Lambda, \phi}{\pi \Rightarrow \Diamond_{j} \Lambda, \Box_{j} \phi} \quad (\Diamond_{j} \Rightarrow) \ \frac{\phi, \Box_{j} \Lambda \Rightarrow \delta}{\Diamond_{j} \phi, \Box_{j} \Lambda \Rightarrow \delta}$$

The jj-negated modal logical rules:

$$(\Rightarrow \neg_{j} \Box_{j}) \frac{\Gamma \Rightarrow \Delta, \neg_{j} \phi}{\Gamma \Rightarrow \Delta, \neg_{j} \Box_{j} \phi} \qquad (\gamma_{j} \Diamond_{j} \Rightarrow) \frac{\neg_{j} \phi, \Gamma \Rightarrow \Delta}{\neg_{j} \Diamond_{j} \phi, \Gamma \Rightarrow \Delta}$$
$$(\gamma_{j} \Box_{j} \Rightarrow) \frac{\neg_{j} \phi, \Box_{j} \Lambda \Rightarrow \delta}{\neg_{j} \Box_{j} \phi, \Box_{j} \Lambda \Rightarrow \delta} \qquad (\Rightarrow \gamma_{j} \Diamond_{j}) \frac{\pi \Rightarrow \Diamond_{j} \Lambda, \gamma_{j} \phi}{\pi \Rightarrow \Diamond_{j} \Lambda, \gamma_{j} \Diamond_{j} \phi}$$

The kj-negated modal logical rules:

$$(\neg_k \Box_j \Rightarrow) \frac{\neg_k \phi, \Gamma \Rightarrow \Delta}{\gamma_k \Box_j \phi, \Gamma \Rightarrow \Delta} \qquad (\Rightarrow \gamma_k \Diamond_j) \frac{\Gamma \Rightarrow \Delta, \gamma_k \phi}{\Gamma \Rightarrow \Delta, \gamma_k \Diamond_j \phi} \\ (\Rightarrow \gamma_k \Box_j) \frac{\pi \Rightarrow \Diamond_j \Lambda, \gamma_k \phi}{\pi \Rightarrow \Diamond_j \Lambda, \gamma_k \Box_j \phi} \qquad (\gamma_k \Diamond_j \Rightarrow) \frac{\gamma_k \phi, \Box_j \Lambda \Rightarrow \delta}{\gamma_k \Diamond_j \phi, \Box_j \Lambda \Rightarrow \delta}$$

A sequent calculus for $\mathbf{MML}_n^{\mathbf{S4}}$ [4] is obtained from the one for $\mathbf{MML}_n^{\mathbf{MNT4}}$ by the replacement in each of modal rule the letters δ and π , respectively, with the sets $\{\Box_j\Gamma_1, \neg_j \diamondsuit_j\Gamma_2, \neg_k\Box_j\Gamma_3\}$ and $\{\diamondsuit_j\Delta_1, \neg_j\Box_j\Delta_2, \neg_k\diamondsuit_j\Delta_3\}$ (where $k \neq j$) as well as $\Box_j\Lambda$ and $\diamondsuit_j\Lambda$, respectively, with $\{\Box_j\Lambda_1, \neg_j\diamondsuit_j\Lambda_2, \neg_k\Box_j\Lambda_3\}$ and $\{\diamondsuit_j\Lambda_1, \neg_j\Box_j\Lambda_2, \neg_k\diamondsuit_j\Lambda_3\}$. Because of the lack of space, we are not able to present here a hypersequent calculus for $\mathbf{MML}_n^{\mathbf{S5}}$ based on Restall's hypersequent calculus for **S5** [8], but the reader may find it in [4]. All the calculi for modal multilattice logics are show to be sound, complete, and cut-free.

Acknowledgments. The report of Yaroslav Petrukhin supported by the grant from the National Science Centre, Poland, grant number DEC-2017/25/B/HS1/01268.

References

- Arieli, O., Avron, A., "Reasoning with logical bilattices", Journal of Logic, Language and Information 5 (1996): 25–63.
- Bednarska, K., Indrzejczak, A., "Hypersequent calculi for S5: the methods of cut elimination", Logic and Logical Philosophy, 24, 3 (2015): 277–311.
- [3] Cattaneo, G., Ciucci, D. Lattices with interior and closure operators and abstract approximation spaces. In Transactions on rough sets X. Peters, J. F.; Skowron, A.; Wolski, M.; Chakraborty, M. K., Wu, W.-Z. (Eds.) Lecture notes in computer sciences (Vol. 5656, pp. 67–116). Berlin: Springer. 2009.
- [4] Grigoriev, O., Petrukhin, Y., "On a multilattice analogue of a hypersequent S5 calculus", Logic and Logical Philosophy, 28, 4 (2019): 683–730.
- [5] Grigoriev, O., Petrukhin, Y. "Two proofs of the algebraic completeness theorem for multilattice logic", Journal of Applied Non-Classical Logics 29, 4 (2019): 358–381.
- [6] Indrzejczak A. "Two Is Enough Bisequent Calculus for S5". In: Herzig A., Popescu A. (eds) Frontiers of Combining Systems. FroCoS 2019. Lecture Notes in Computer Science, vol 11715. Springer, Cham. 2019.
- [7] Kamide, N., Shramko, Y. "Modal Multilattice Logic", Logica Universalis 11, 3 (2017): 317–343.
- [8] Restall, G., "Proofnets for S5: Sequents and circuits for modal logic", pages 151172 in Logic Colloquium 2005, series "Lecture Notes in Logic", no. 28, Cambridge University Press, 2007.
- [9] Shramko, Y., "Truth, falsehood, information and beyond: the American plan generalized", In: Bimbo, K. (ed.) J. Michael Dunn on Information Based Logics, Outstanding Contributions to Logic. Springer, Dordrecht, (2016): 191–212.
- [10] Shramko, Y., Wansing, H., "Some useful sixteen-valued logics: how a computer network should think", Journal of Philosophical Logic, 34 (2005), 121–153.
- [11] Zaitsev, D., "A few more useful 8-valued logics for reasoning with tetralattice EIGHT4", Studia Logica, 92, 2 (2009): 265–280.