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The Lambek calculus [9] was introduced as a logical framework for describing natural lan-
guage syntax. In order to be useful for such applications, the Lambek calculus is highly sub-
structural, including neither contraction, nor weakening, nor permutation structural rules. The
only structural rule kept is implicit associativity. From a modern point of view [1], the Lambek
calculus can be considered as a non-commutative intuitionstic version of Girard’s linear logic [3].
Thus, the Lambek can be further extended by linear logic connectives, such as additives and
(sub)exponentials.

The derivability problem for the basic Lambek calculus is NP-complete [13]. The
multiplicative-additive Lambek calculus (viz., the Lambek calculus extended with additive con-
junction and disjunction, denoted by MALC) is PSPACE-hard [4, 6]. Extending the Lambek
calculus with an exponential modality yields an undecidable (Σ0

1-complete) system [10]. A more
fine-grained system can be obtained by extending MALC with a family of structural modalities,
called subexponentials, cf. [11] Such a non-commutative version of the subexponential extension
of linear logic was studied by Kanovich et al. [5]. The Lambek calculus with subexponentials is
also undecidable, provided that at least one of the subexponentials allows the rule of non-local
contraction.

Action logic, or the Lambek calculus with additives further extended with iteration (Kleene
star), originates in the works of Pratt [14] and Kozen [7]. Buszkowski and Palka [2, 12] con-
sidered a stronger version of action logic, where iteration is governed by an ω-rule instead of
inductive-style axioms. This system is called infinitary action logic. Buszkowski and Palka
proved that it is Π0

1-complete (thus, in particular, not computably enumerable).
We study an extension of MALC with both Kleene star and a family subexponentials. This

extension is called infinitary action logic with exponentiation and denoted by !ACTω.
Formulae of !ACTω are built from propositional variables (Var = {p1, p2, p3, . . .}) and the

multiplicative unit (truth) constant 1 using the following binary connectives:

• multiplicative connectives: left implication (, right implication (, and product (multi-
plicative conjunction) ⊗;

• additive connectives: conjunction & and disjunction ⊕

and the following unary connectives:

• iteration (Kleene star) ∗;

• subexponentials: we fix a partially ordered set 〈I,�〉 of subexponential labels, and three
subsets of I, called W, C, and E , upwardly closed w.r.t. �
For each s ∈ I we introduce a unary connective !s.

Intuitively, W, C, and E mean the sets of subexponentials for which we allow weakening,
contraction, and permutation (exchange) rules respectively.

The axioms and rules of !ACTω are as follows:

A ` A (id)
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Π→ A Γ, B,∆ ` C
Γ,Π, A(B,∆ ` C (( `)

A,Π ` B
Π ` A(B

(`()

Π ` A Γ, B,∆ ` C
Γ, B

(

A,Π,∆ ` C ( (`)
Π, A ` B

Π ` B (

A
(` ()

Γ, A,B,∆→ C

Γ, A⊗B,∆ ` C (⊗ `) Γ ` A ∆ ` B
Γ,∆ ` A⊗B (` ⊗)

Γ,∆→ C

Γ,1,∆→ C
(1 `) ` 1

(` 1)

Γ, A1,∆ ` C Γ, A2,∆ ` C
Γ, A1 ⊕A2,∆ ` C

(⊕ `)
Π→ Ai

Π→ A1 ⊕A2
(` ⊕)i, i = 1, 2

Γ, Ai,∆→ C

Γ, A1 &A2,∆→ C
(& `)i, i = 1, 2

Π→ A1 Π→ A2

Π→ A1 &A2
(` &)

(Γ, An,∆ ` C)n∈N
Γ, A∗,∆ ` C (∗ `)ω

Π1 → A . . . Πn ` A
Π1, . . . ,Πn ` A∗

(` ∗)n, n > 0

Γ, A,∆ ` C
Γ, !sA,∆ ` C

(! `)
!s1A1, . . . , !

snAn ` B
!s1A1, . . . , !

snAn ` !sB
(` !), si � s

Γ, A,∆→ C

Γ, !wA,∆→ C
(weak), w ∈ W

Γ,Φ, !eA,∆ ` C
Γ, !eA,Φ,∆ ` C

(perm)1, e ∈ E
Γ, !eA,Φ,∆ ` C
Γ,Φ, !eA,∆ ` C

(perm)2, e ∈ E

Γ, !cA,Φ, !cA,∆ ` C
Γ, !cA,Φ,∆ ` C

(ncontr)1, c ∈ C
Γ, !cA,Φ, !cA,∆ ` C

Γ,Φ, !cA,∆ ` C
(ncontr)2, c ∈ C

Π ` A Γ, A,∆ ` C
Γ,Π,∆ ` C (cut)

Since (ncontr) and (weak) derive (perm), we explicitly postulate W ∩ C ⊆ E .
Derivations in !ACTω are trees which can be infinitely branching, but should be well-founded

(that is, infinite paths are not allowed).
The cut rule is eliminable, which is established by a juxtaposition of two arguments. The

first one is cut elimination in infinitary action logic, performed by Palka [12] using transfinite
induction. The second one is cut elimination is the subexponential extension of MALC by
Kanovich et al. [5], using a version of Gentzen’s mix rule.

Our main result is that a combination of exponential and Kleene star yields a system of
hyperarithmetical complexity:
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Theorem 1. If C 6= ∅, then the derivability problem in !ACTω is Π1
1-complete.

The proof of the lower bound, Π1
1-hardness, is based on encoding Kozen’s result on the

complexity of Horn theories for *-continuous Kleene algebras [8]. The upper bound is established
by quite a general argument, based on the form of the rules and derivations in the calculus.

Another measure of complexity of !ACTω is its closure ordinal. The closure ordinal is defined
as follows. Let D be the immediate derivability operator. The D operator is a mapping of sets
of sequents into sets of sequents. For a set of sequents S and a sequent s we have s ∈ D(S) if
and only if either s ∈ S, or s is an axiom, or s is obtained by one of the inference rules from
sequents belonging to S.

By Dα, for an ordinal α, we denote the α-th transfinite iteration of D . The closure ordinal
is the smallest ordinal α such that Dα(∅) = Dα+1(∅). The existence of such α follows from
the Knaster–Tarski theorem.

We compute the closure ordinal for !ACTω:

Theorem 2. If C 6= ∅, the closure ordinal for !ACTω (for the D operator defined above using
axioms and rules of !ACTω) is ωCK

1 , that is, the smallest non-computable ordinal, known as the
Church–Kleene ordinal.

Thus, we have established exact complexity bounds for !ACTω, both in terms of the com-
plexity class for the derivability problem and in terms of the closure ordinal of the immediate
derivability operator. Complexity of naturally arising fragments of !ACTω, with C = ∅ (that is,
where no subexponential allows contraction) or where !c, c ∈ C, cannot be applied to formulae
containing the Kleene star, is left for future research.
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