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Abstract

In this work we present a methodology to construct globally sound but possibly locally
unsound analytic calculi for partial theories of Henkin quantifiers. It is demonstrated that
locally sound analytic calculi do not exist for any reasonable fragment of the full theory of
Henkin quantifiers.

Henkin introduced the general idea of dependent quantifiers extending classical first-order
logic [4], cf. [5] for an overview. This leads to the notion of a partially ordered quantifier with
m universal quantifiers and n existential quantifiers, where F is a function that determines for
each existential quantifier on which universal quantifiers it depends (m and n may be any finite
number). The simplest Henkin quantifier that is not definable in ordinary first-order logic is
the quantifier QH binding four variables in a formula. A formula A using QH can be written

as AH =

(
∀x ∃u
∀y ∃v

)
A(x, y, u, v). This is to be read ”For every x there is a u and for every y

there is a v (depending only on y)” s.t. A(x, y, u, v). If the semantical meaning of this formula is
given in second-order notation, the above formula is semantically equivalent to the second-order
formula ∃f∃g∀x∀yA(x, y, f(x), g(y)), where f and g are function variables. Systems of partially
ordered quantification are intermediate in strength between first-order logic and second-order
logic. Similar to second-order logic, first-order logic extended by QH is incomplete [7]. In proof
theory incomplete logics are represented by partial proof systems, c.f. the wealth of approaches
dealing with partial proof systems for second-order logic. However, in contrast to second-order
logic only a few results deal with the proof theoretic aspect of the use of branching quantifiers
in partial systems.1

The first step in this work is to establish an analytic function calculus with a suitable partial
Henkin semantics. We choose a multiplicative function calculus based on pairs of multisets as
sequents corresponding to term models and refer to this calculus as LF. Besides the usual
propositional inference rules of LK the quantifier inference rules of LF are

• ∀-introduction for second-order function variables

A(t(t∗1, . . . , t
∗
n))Γ→ ∆ ∀nl∀f∗A(f∗(t∗1, . . . , t
∗
n)),Γ→ ∆

t is a term and t∗1, . . . , t
∗
n are semi-terms.

Γ→ ∆, A(f(t∗1, . . . , t
∗
n))

∀nrΓ→ ∆,∀f∗A(f∗(t∗1, . . . , t
∗
n))

1The most relevant paper is the work of Lopez-Escobar [6], describing a natural deduction system for QH .
The setting is of course intuitionistic logic. The formulation of the introduction rule for QH corresponds to the
introduction rule right in the sequent calculus developed in this paper. The system lacks an elimination rule.
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f is a free function variable (eigenvariable) of arity n which does not occur in the lower
sequent and t∗1, . . . , t

∗
n are semi-terms.

• ∃-introduction for second-order function variables

A(f(t∗1, . . . , t
∗
n)),Γ→ ∆ ∃nl∃f∗A(f∗(t∗1, . . . , t
∗
n)),Γ→ ∆

f is a free function variable (eigenvariable) of arity n which does not occur in the lower
sequent and t∗1, . . . , t

∗
n are semi-terms.

Γ→ ∆, A(t(t∗1, . . . , t
∗
n))

∃nrΓ→ ∆,∃f∗A(f∗(t∗1, . . . , t
∗
n))

t is a term and t∗1, . . . , t
∗
n are semi-terms.

LF is obviously cut-free complete w.r.t. term models by the usual Schütte argument and admits
effective cut-elimination. The question arises why not to be content with the second-order
representation of Henkin quantifiers. The answer is twofold: First of all, a lot of information
can be extracted from cut-free proofs but only on first-order level. This includes (i) suitable
variants of Herbrand’s theorem with or without Skolemization, (ii) the construction of term-
minimal cut-free proofs and (iii) the development of suitable tableaux provers. (i) fails due
to the failure of second-order Skolemization, (ii) and (iii) fail because of the undecidability of
second-order unification and the impossibility to obtain most general solutions.

Therefore, we construct the analytic calculus LH by deriving first-order rules from second-
order rule macros. The language LH of LH is based on the usual language of first-order logic
with exception that the quantifiers are replaced by the quantifier QH . With exception of the
quantifier-rules, LH corresponds to the calculus LK in a multiplicative setting. The idea is
to abstract the eigenvariable conditions from the premises of the inference macros in LF. To
obtain LH, we replace the quantifier rules of LK by

Γ→ ∆, A(a, b, t1, t2)
QHr

Γ→ ∆,

(
∀x ∃u
∀y ∃v

)
A(x, y, u, v)

a and b are eigenvariables (a 6= b) not allowed to occur in the lower sequent and t1 and t2 are
terms s.t. t1 must not contain b and t2 must not contain a.2

A(t′1, t
′
2, a, b),Π→ Γ

QHl1(
∀x ∃u
∀y ∃v

)
A(x, y, u, v),Π→ Γ

where a and b are eigenvariables (a 6= b) not allowed to occur in the lower sequent and t′1, t′2
are terms s.t. b does not occur in t′2 and a and b do not occur in t′1.

A(t′1, t
′
2, a, b),Π→ Γ

QHl2(
∀x ∃u
∀y ∃v

)
A(x, y, u, v),Π→ Γ

2Note that such a rule was already used by Lopez-Escobar in [6].
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where a and b are eigenvariables (a 6= b) not allowed to occur in the lower sequent and t′1, t′2
are terms s.t. a does not occur in t′1 and a and b do not occur in t′2. 3

Cuts in LH can be eliminated following Gentzen’s procedure and we obtain a midse-
quent theorem. However, LH is incomplete: Assume towards a contradiction the sequent(
∀x ∃u
∀y ∃v

)
A(x, y, u, v) →

(
∀x ∃u
∀y ∃v

)
(A(x, y, u, v) ∨ C) is provable. Then it is provable

without cuts. A cut-free derivation after deletion of weakenings and contractions has the form:

A(a, b, c, d)→ A(a, b, c, d)

A(a, b, c, d)→ A(a, b, c, d) ∨ C

...

Due to the mixture of strong and weak positions in QH none of QHr , QHl1
, QHl2

can be applied.
The inherent incompleteness of LH even for trivial statements is a consequence of the fact

that QH represents a quantifier inference macro combining quantifiers in a strong and a weak
position. This phenomenon occurs already on the level of usual first-order logic when quantifiers
defined by macros of quantifiers such as ∀x∃y are considered [2].

The solution is to consider sequent calculi with concepts of proof which are globally but
not locally sound, similar to [1]. This means that all derived statements are true but that
not every sub-derivation is meaningful. We obtain for LF and LH globally, but possibly
locally unsound calculi LF++ and LH++ by weakening the eigenvariable conditions and show
soundness, completeness and cut-elimination for the novel calculus LH++ [3]. The main results
are4:

Lemma 1. An LH++-derivation ϕ with cuts can be immediately transformed into an LF++-
derivation ϕ′ with cuts.

Lemma 2. An LF++-derivation ϕ where the end-sequent contains only quantifiers in blocked
distinct sequences ∃f∃g∀x∀y can be transformed into a cut-free LF++-derivation ϕ′ where the
quantifiers in the sequence ∃f∃g∀x∀y belonging to a block in the end-sequent are inferred im-
mediately one after the other.

Lemma 3. A cut-free LF++-proof ϕ with blocked quantifier inferences ∃f∃g∀x ∀y from atomic
axioms and only such blocks of quantifiers in the end-sequent can be transformed into a cut-free
LH++-proof ϕ′ from atomic axioms.

Theorem 1. LH++ is sound, cut-free complete w.r.t. the intended semantics and admits an
effective cut-elimination.

It is obvious that the methodology developed in this work can be extended to arbitrary
Henkin quantifiers, however not to arbitrary macros of quantifiers, where repeated alternations
between strong and weak quantifiers are allowed.
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