Boxing modal logics

Valentin Shehtman¹²³

 ¹ Institute for Information Transmission Problems, RAS shehtman@netscape.net
² National Research University Higher School of Economics
³ Moscow State University

We consider normal 1-modal logics, propositional and predicate. For the basic definitions cf. [1], [2].

1 Propositional logics

For a set of modal formulas Γ , put

$$\Box\Gamma := \{\Box A \mid A \in \Gamma\}.$$

For a modal propositional logic L put

$$\Box \cdot L := \mathbf{K} + \Box L.$$

Lemma 1.1. $\Box \cdot (\mathbf{K} + \Gamma) = \mathbf{K} + \Box \Gamma$.

It turns out that $\Box \cdot L$ inherits many properties of L.

Theorem 1.2. • If L is Kripke complete, then \Box L is Kripke complete.

- If L is strongly Kripke complete, then $\Box \cdot L$ is strongly Kripke complete.
- If L is canonical, then $\Box \cdot L$ is canonical.
- If L has the FMP, then $\Box \cdot L$ has the FMP.
- If L is locally tabular, then $\Box \cdot L$ is locally tabular.
- If L is has a finite modal depth, then $\Box \cdot L$ has a finite modal depth:

 $md(\Box \cdot L) \le md(L) + 1.$

Hence, in particular, we obtain many new examples of locally tabular logics.

Corollary 1.3. The logics $\mathbf{K} + \Box^n(p \to \Box p)$ (and all their extensions) are locally tabular.

Another consequence is the FMP for some logics of trees. Recall that a *tree* (irreflexive and intransitive) is a rooted frame, in which every point (but the root) has a unique predecessor. A *reflexive tree* is a reflexive closure of a tree.

Theorem 1.4. The logic of every serial tree has the FMP.

Theorem 1.5. The logic of every reflexive tree has the FMP.

Theorem 1.6. The logic of every tree validating

$$\Diamond \top \rightarrow \Diamond^2 \top \land \Diamond \Box \bot$$

has the FMP.

Boxing Modal Logics

2 Predicate logics

Recall that $\mathbf{Q}\mathbf{\Lambda}$ is the minimal predicate extension of a propositional logic $\mathbf{\Lambda}$; $\mathbf{T} = \mathbf{K} + \Box p \rightarrow p$. For a predicate modal logic L we also define boxing:

$$\Box \cdot L := \mathbf{QK} + \Box L.$$

For modal predicate logics a direct analogue of Lemma 1.1 does not hold. It is replaced by the following

Lemma 2.1. $\Box \cdot (\mathbf{QT} + \Gamma) = \mathbf{QT} + \Box \Gamma + \Box \forall ref$, where

$$\Box \forall ref := \Box \forall x (\Box P(x) \to P(x)).$$

Axiomatization of boxing in other cases remains an open problem.

Definition 2.2. A predicate modal theory Γ is a set of closed predicate modal formulas with constants.

A predicate modal theory Γ is satisfiable in a predicate Kripke frame \mathbf{F} if there exists a Kripke model M over \mathbf{F} , a world w in M and a map δ from constants of Γ to the domain of w such that $M, w \models \delta \cdot \Gamma$.

A predicate modal logic L is strongly Kripke complete if every L-consistent countable theory Γ is satisfiable in a Kripke frame validating L.

Theorem 2.3. Let Λ be a modal propositional logic containing \mathbf{T} . If $\mathbf{Q}\Lambda$ is strongly Kripke complete, then $\Box \cdot \mathbf{Q}\Lambda$ is strongly Kripke complete.

There are several well-known examples of logics Λ above \mathbf{T} , for which $\mathbf{Q}\Lambda$ is strongly Kripke complete: \mathbf{T} , $\mathbf{S4}$, $\mathbf{S5}$, $\mathbf{S4.2}$, $\mathbf{S4.3}$, \mathbf{Triv} . So in these cases boxing preserves strong Kripke completeness.

The definition of strong completeness can be extended to Kripke sheaf semantics. Then we can prove a better result:

Theorem 2.4. If a predicate modal logic L is strongly Kripke sheaf complete, then $\Box \cdot L$ is strongly Kripke sheaf complete.

On the other hand, quite often logics of the form $\mathbf{QK} + \Box \Gamma$ are Kripke (and Kripke sheaf) incomplete. In particular, we have

Theorem 2.5. If Λ is any consistent modal propositional logic containing \mathbf{T} , then $\mathbf{Q}(\Box \cdot \Lambda)$ is Kripke incomplete, and $\Box \cdot (\mathbf{Q}\Lambda) = \mathbf{Q}(\Box \cdot \Lambda) + \Box \forall ref$ is its Kripke completion.

References

- [1] A. CHAGROV, M. ZAKHARYASCHEV. Modal Logic. Oxford University Press, 1997.
- [2] D. GABBAY, V. SHEHTMAN, D. SKVORTSOV. Quantification in nonclassical logic, Vol. 1. Elsevier, 2009.
- [3] V. SHEHTMAN. Bisimulation games and locally tabular logics. Russian Mathematical Surveys, 71(5), pp. 979-981, 2016.
- [4] V. SHEHTMAN. On Kripke completeness of modal predicate logics around quantified K5. Submitted.