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Abstract

In the talk we present axiomatic of fix-point computer arithmetics that we use in our
platform-independent incremental combined approach to specification and verification of
the standard functions sqrt, cos and sin that implement mathematical functions /> cos
and sin.

1 Introduction

One who has a look at verification research and practice may observe that there exist verification
in large (scale) and verification in small (scale): verification in large deals (usually) behavioral
properties of large-scale complex critical systems like the Curiosity Mars mission [4], while
verification in small addresses (usually) functional properties of small programs like computing
the standard trigonometry functions [3, 2].

Our research “Platform-independent approach to formal specification and verification of
standard mathematical functions” deals with verification in small. It may look like that it is
about the same topic as [3, 2] i.e. formal verification of the standard computer functions that
implement mathematical functions. But there are serious differences between [3, 2] and our
research project.

Our research project is aimed onto a development of an incremental combined approach
to the specification and verification of the standard mathematical functions. Platform-
independence means that we attempt to design a relatively simple axiomatization of the com-
puter arithmetic in terms of real, rational, and integer arithmetic (i.e. the fields R and Q of real
and rational numbers, the ring Z of integers) but don’t specify neither base of the computer
arithmetic, nor a format of numbers’ representation. Incrementality means that we start with
the most straightforward specification of the simplest easy to verify algorithm in real numbers
and finish with a realistic specification and a verification of an algorithm in computer arithmetic.
We call our approach combined because we start with a manual (pen-and-paper) verification of
some selected algorithm in real numbers, then use these algorithm and verification as a draft
and proof-outlines for the algorithm in computer arithmetic and its manual verification, and
finish with a computer-aided validation of our manual proofs with some proof-assistant system
(to avoid appeals to “obviousness” that are very common in human-carried proofs).

2 A Brief of the Approach Results

In our approach we start with easy-to-verify Hoare total correctness assertions [1] for logical
specification of imperative algorithms that implements the computer functions in “ideal” real
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arithmetic, and finish with computer-aided verification of the computer functions in computer
fix-point arithmetic. Full details of our approach can be found in [6, 5].

In a journal (Russian) paper [6] an adaptive imperative algorithm implementing the Newton-
Raphson method for a square root function Na has been specified by total correctness asser-
tions and verified manually using Floyd-Hoare approach in both fix-point and floating-point
arithmetics; the post-condition of the total correctness assertion states that the final overall
truncation error is not greater that 2ulp where ulp is Unit in the Last Place — the unit of the
last meaningful digit.

The paper [6] has reported also two steps towards computer-aided validation and verification
of the used adaptive algorithm. In particular, an implementation of a fix-point data type accord-
ing to the axiomatization can be found at https://bitbucket.org/ainoneko/lib_verify/
src/; ACL2 computer-carried proofs of (i) the consistency of the computer fix-point arith-
metic axiomatization, and (ii) the existence of a look-up table with initial approximations for
J/ are available at https://github.com/apple2-66/c-light/tree/master/experiments/
square-root.

In a work-in-progress electronic preprint [5] platform-independent and incremental approach
is applied for manual (pen-and-paper) verification (using Floyd-Hoare approach) of the com-
puter functions cos and sin (that implement mathematical trigonometric functions cos and
sin) for fix-point argument values in the rage [—1,1] (in radian measure); the post-condition
of the total correctness assertion states that the final overall truncation error is not greater
that ;EYEZ;; where n = O (| In¢|) and € > 0 is user-defined computational error (in ideal real
arithmetic).

3 Fix-point Arithmetic

Below we present version axiomatization (modulo “ideal” arithmetic of real, rational and in-
teger numbers) of a computer (platform-independent) fix-point arithmetic data type as in [6].
(Please remark that we explicitly admit that there may be several different fix-point data types
simultaneously.)

A fix-point data-type (with Gaussian rounding) D satisfies the following axioms.

e The set of values Valp is a finite set of rational numbers Q (and reals R) such that

— it contains the least infp < 0 and the largest supp > 0 elements,
— altogether with

* all rational numbers in [infp, supp] with a step dp > 0,
* all integers Intp in the range [— infp, supp).

e Admissible operations include machine addition @, subtraction &, multiplication ®, di-
vision @, integer rounding up [ | and down | |.

Machine addition and subtraction. If the exact result of the standard mathematical
addition (subtraction) of two fix-point values falls within the interval [infp,supp),
then machine addition (subtraction respectively) of these arguments equals to the
result of the mathematical operation (and notation + and — is used in this case).

Machine multiplication and division. These operations return values that are near-
est in Valp to the exact result of the corresponding standard mathematical operation:
for any z,y € Valp
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ifx xyeValp then z®y =z X y;

— ifz/y € Valp then x @ y = x/y;

if x x y € [infp,supp] then |z @y — z X y| < dp/2;
— if x/y € [infp, supp] then |z @y — z/y| < op/2;

Integer rounding up and down are defined for all values in Valp.

e Admissible binary relations include all standard equalities and inequalities (within
[infp, supp]) denoted in the standard way =, #, <, >, <, >.
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