On a Possibility of Finite Characterizations for Kripke Complete Non-Recursively Axiomatizable Superintuitionistic Predicate Logics

Dmitrij Skvortsov

It is well known that there exist many natural classes \mathcal{F} of predicate Kripke frames for which the corresponding superintuitionistic predicate logics $\mathbf{L}[\mathcal{F}]$ are non-recursively axiomatizable (see e.g. [1, 2, 3]). Here we consider a possibility of finite semantical characterizations for some logics of this kind.

Denote the superintuitionistic predicate logic of a (predicate) Kripke frame F (i.e., the set of formulas valid in F) by $\mathbf{L}F$. Recall that a predicate logic \mathbf{L} is called *Kripke complete* if $\mathbf{L} = \mathbf{L}[\mathcal{F}]$ for some class \mathcal{F} of Kripke frames, where $\mathbf{L}[\mathcal{F}] = \bigcap (\mathbf{L}F : F \in \mathcal{F})$. The *Kripke completion* of a logic \mathbf{L} is the smallest (w.r.t. the inclusion) Kripke complete extension of \mathbf{L} .

Let \mathbf{L} and \mathbf{L}_0 be two predicate logics, \mathbf{L} being Kripke complete. We say that \mathbf{L}_0 semantically generates \mathbf{L} if \mathbf{L} is the Kripke completion of \mathbf{L}_0 .

A logic $\mathbf{L} = \mathbf{L}[\mathcal{F}]$ of a class \mathcal{F} of Kripke frames is called *finitely* (or *recursively*) semantically generated if there exists a finitely (or, resp., recursively) axiomatizable logic \mathbf{L}_0 semantically generating \mathbf{L} . In this case we also can say that the class \mathcal{F} itself is finitely (resp., recursively) semantically generated. This

notion can be regarded as a semantical analogue to finite / recursive axiomatizability; namely, semantical comletion (i.e., 'semantical closure') is used instead of deductive closure (i.e., deductive consequence). Clearly, this notion can be interesting only for natural classes of Kripke frames.

Obviously, every finitely / recursively axiomatizable Kripke complete logic is trivially finitely / recursively semantically generated: just take $\mathbf{L}_0 = \mathbf{L}$. Here we show that natural Kripke complete non-recursively axiomatizable logics can be still finitely (hence, recursively) semantically generated.

Proposition. Let $\mathbf{L} = \mathbf{L}[\mathcal{F}]$ be the logic of a class of Kripke frames \mathcal{F} , let \mathbf{L}_0 be a predicate logic, and let $\mathcal{F}_{\mathbf{L}_0}$ be the class of Kripke frames validating \mathbf{L}_0 . Then: \mathbf{L}_0 semantically generates \mathbf{L} iff the following two conditions hold:

(i) $\mathcal{F} \subseteq \mathcal{F}_{\mathbf{L}_0}$ or, equivalently, $\mathbf{L}_0 \subseteq \mathbf{L}(=\mathbf{L}[\mathcal{F}]);$ (ii) $\mathbf{L} \subseteq \mathbf{L}F$ for every frame F from $\mathcal{F}_{\mathbf{L}_0} \setminus \mathcal{F}.$

Proof. Let $\mathbf{L}^* = \mathbf{L}[\mathcal{F}_{\mathbf{L}_0}]$ be the Kripke completion of \mathbf{L}_0 ; hence

 \mathbf{L}_0 semantically generates \mathbf{L} iff (0) $\mathbf{L}^* = \mathbf{L}$. The condition (*ii*) means that $\mathbf{L} \subseteq \mathbf{L}[\mathcal{F}_{\mathbf{L}_0} \setminus \mathcal{F}]$. Therefore, the condition (0) obviously implies (*ii*), as well as (*i*).

On the other hand, (i) implies that $\mathbf{L}^* = \mathbf{L} \cap \mathbf{L}[\mathcal{F}_{\mathbf{L}_0} \setminus \mathcal{F}]$, so (ii) gives (0). \Box

Let \mathbf{Fin}^c be the class of frames with constant domains over finite posets; let \mathbf{P}^c_{∞} be the class of frames of finite height with constant domains; finally, let \mathbf{WF}^c_d be the class of frames with constant domains over dually well-founded (i.e., Nötherian) posets.

Theorem. (The logics of) the classes of frames Fin^c , \mathbf{P}_{∞}^c , WF_d^c are finitely semantically generated.

Cf. [4], Proposition 1 and footnote 9 from Sect. 3.2, and Lemma 3 from Sect. 4.3. Note that here the condition (*ii*) from our Proposition follows from the subsequent claim (cf. [4], Corollary 2 from Sect. 3.1):

Claim. $\mathbf{L}[\mathbf{Fin}^c] \subseteq \mathbf{L}F$ for every frame F with a finite constant domain.

We do not know if the logics of the corresponding classes of frames with expanding domains are finitely (or at least recursively) semantically generated.

References

- Skvortsov D. On axiomatizability of some intermediate predicate logics (summary). Reports on Math. Logic 22 (1988), pp. 115–116.
- [2] Skvortsov D. The predicate logic of finite Kripke frames is not recursively axiomatizable. Journal of Symbolic Logic 70 (2005), pp. 451–459.
- [3] Skvortsov D. On non-axiomatizability of superintuitionistic predicate logics of some classes of well-founded and dually well-founded Kripke frames. Journ. of Logic and Computation 16, No.5 [Special Issue: Computer Science Applications of Modal Logic (ed.V.B.Shehtman)] (2006), pp.685-695.
- [4] Skvortsov D. A remark on the superintuitionistic predicate logic of Kripke frames of finite height with constant domains: A simpler Kripke complete logic that is not strongly complete. Advances in Modal Logic, Vol.12, College Publications, 2018, pp.577-590 [Intern. Conf. AiML 2018, 27 - 31 Aug. 2018, Bern, Switzerland].