
Unrefutability by clause set cycles
Joint work with Stefan Hetzl

Jannik Vierling

Vienna University of Technology
Institute of Discrete Mathematics and Geometry

jannik.vierling@tuwien.ac.at

The subject of automated inductive theorem proving (AITP) aims at
automating the process of finding proofs by mathematical induction. The
automation of proof by mathematical induction has applications in formal
methods for software engineering and in the formalization of mathematics.
A great variety of methods has been developed for the automation of proof
by induction. Typically each method operates in a more or less different
setting. Furthermore, the design of these methods is driven by efficiency and
ease of automation and therefore many AITP methods exist mainly at lower
levels of abstraction. Because of their technical nature, AITP methods are
traditionally analyzed empirically, and formal results backing the empirical
observations are still rare. In particular, there are currently only very few
negative results and it is difficult to classify AITP systems by their strength.

We address this situation by analyzing AITP methods formally. The first
step of such an analysis consists in abstracting an AITP method, or a family
of methods, by a logical theory. Such an abstraction can then be analyzed
by applying results and techniques from mathematical logic. In this way
we can measure the strength of AITP systems and compare them with each
other. Furthermore, abstracting AITP systems by logical theories allows us
to obtain negative results which are particularly valuable in revealing the
logical features that a given method lacks.

The n-clause calculus [KP13] is an AITP method that extends the super-
position calculus by a cycle detection mechanism. A cycle detected by the
n-clause calculus represents an argument by infinite descent that establishes
the inconsistency of the given clause set and thus terminates the refutation.
In [HV20] we have analyzed the n-clause calculus by abstracting its com-

1

mailto:jannik.vierling@tuwien.ac.at

paratively technical cycle detection mechanism by the notion of clause set
cycles. In the following we will recall the notion of refutation by a clause set
cycle and some important results. By 0/0 and s/1 we denote the function
symbols representing the natural number 0 and the successor function for
natural numbers, respectively. Furthermore, we fix a special, fresh constant
symbol η on which arguments by infinite descent take place.

Definition 1. Let L be a first-order language. An L ∪ {η} clause set C(η)
is called an L clause set cycle if it satisfies the following conditions

C(s(η)) |= C(η), (C1)
C(0) |= ⊥. (C2)

An L ∪ {η} clause set D(η) is refuted by a clause set cycle C(η) if

D(η) |= C(η). (C3)

By dualizing the definition of clause set cycles and observing that clause
set cycles are essentially parameter-free we can we can show that refutations
by a clause set cycle can be simulated by the parameter-free induction rule
for ∃1 formulas.

Theorem 2 ([HV]). Let D(η) be an L ∪ {η} clause set. If D(η) is refuted
by an L clause set cycle, then [∅,∃1(L)−-INDR] +D(η) is inconsistent.

As mentioned above this upper bound is optimal in terms of the quantifier
complexity of the induction formulas. In other words clause set cycles cannot
be simulated by quantifier-free induction.

Theorem 3 ([HV20]). There exists a language L and an L∪ {η} clause set
D(η) such that D(η) is refuted by an L clause set cycle, but Open(L)-IND+
D(η) is consistent.

These results give rise to the question whether clause set cycles are at
least as strong as induction for quantifier-free formulas. Empirical evidence
has led us to conjecture that refutation by a clause set cycle is incomparable
with induction for quantifier-free formulas.

In this talk we will show that this conjecture has a positive answer. We
define a candidate clause set in the setting of linear arithmetic. The language
of linear arithmetic consists of the symbols 0/0, s/1, p/1, and +/2, where
the latter two represent the predecessor function and the addition of natural
numbers, respectively. Let T be the theory axiomatized by the universal

2

closure of 0 6= s(x) and the defining equations of p/1 and +/2, then the
clause set I(η) is given by

I(η) := cnf (T) ∪ {{η + η = η}, {η 6= 0}}.

Intuitively, the clause set I(η) asserts the existence of a non-zero additive
idempotent. By making use of the upper bound of Theorem 2 we can show
the unrefutability of I(η) by a clause set cycle by proving the following
independence result.

Theorem 4. [T ,∃1(L(T))−-INDR] 6` x+ x = x→ x = 0.

We will proceed by constructing a model M with non-zero idempotents
whose domain consists of one copy of N and |N| copies of Z. In particular,
we will show that for every true, p-free, ∃1 formula ϕ(x), there exists on
every non-standard chain an infinite, strictly descending sequence of elements
(zi)i∈N such that

M |= ϕ(zi), for all i ∈ N.

The unrefutability of I(η) by clause set cycles shows that clause set cycles
are very weak and can not even deal with formulas such as x+x = x→ x = 0
that have a straightforward proof by quantifier-free induction. However, the
situation may even be much worse. A clause set cycle C(η) corresponds
roughly speaking to an inductive ∃1 lemma ϕC(x). However, the notion of
refutation by a clause set cycle only uses this lemma to infer the instance
ϕC(η). Therefore, we conjecture that refutation by a clause set cycle is
even incomparable with parameter-free induction for quantifier-free formulas.
The intuition for this is, that proving a sentence like 0 + (η + η) = η + η
requires the lemma 0 + x = x and the instance x 7→ η + η. The conjectured
relations between the refutational strength of clause set cycles and some
related theories with induction are shown in Figure 1.

References

[HV] Stefan Hetzl and Jannik Vierling. An unprovability result for clause
set cycles. In preparation.

[HV20] Stefan Hetzl and Jannik Vierling. Clause Set Cycles and Induction.
Logical Methods in Computer Science, 16(4):11:1–11:17, November
2020.

3

[KP13] Abdelkader Kersani and Nicolas Peltier. Combining superposi-
tion and induction: A practical realization. In Pascal Fontaine,
Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers
of Combining Systems, volume 8152 of Lecture Notes in Computer
Science, pages 7–22. Springer, 2013.

4

?

∃1-IND

Open-IND[∅,∃−1 -INDR]

CSC Open−-IND

Figure 1: Conjectured relation between the refutational strength of various
induction systems. The dots indicate that the surrounding area is not empty,
the question mark indicates that we conjecture the are to be non-empty.

5

